2024 ANNUAL DRINKING WATER QUALITY REPORT

Mapleton Municipal Water Authority PWSID # 4310015

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien. (This report contains very important information about your drinking water. Translate it or speak with someone who understands it.)

WATER SYSTEM INFORMATION: This report describes our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact Cordelia Beatty at (814) 542-3293, or email, water@mapleton-pa.com. We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the 1st Wednsday of every month at the Mapleton Borough Building located at 365 Sugar Street, Mapleton, PA 17052.

SOURCE OF WATER: Our water is a surface water source from Scrub Run and a groundwater source from Well #1.

A Source Water Assessment of our sources was completed by the PA Department of Environmental Protection (Pa. DEP). The Assessment has found that our sources of are potentially most susceptible to Nitrite/Nitrate and turbidity. Overall, our sources has little risk of significant contamination. A summary report of the Assessment is available on the Source Water Assessment & Protection webpage at http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/SrceProt/SourceAssessment/default.htm). Complete reports were distributed to municipalities, water supplier, local planning agencies and PADEP offices. Copies of the complete report are available for review at the Pa. DEP Southcentral Regional Office, Records Management Unit at (717)705-4700.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

MONITORING YOUR WATER: We routinely monitor for contaminants in your drinking water according to federal and state laws. The following tables show the results of our monitoring for the period of January 1 to December 31, 2024. The State allows us to monitor some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

DEFINITIONS AND ABBREVIATIONS:

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level – The minimum level of residual disinfectant required at the entry point to the distribution system.

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Mrem/year = millirems per year (a measure of radiation absorbed by the body)

pCi/L = picocuries per liter (a measure of radioactivity) ppm

ppm = parts per million, or milligrams per liter (mg/L)

ppb = parts per billion, or micrograms per liter ($\mu g/L$)

ppq = parts per quadrillion, or picograms per liter

ppt = parts per trillion, or nanograms per liter

DETECTED SAMPLE RESULTS:

Chemical Contaminant	MCL	MCLG	Highest Level Detected	Range of Detectio ns	Units	Sample Date	Violation Y/N	Sources of Contamination
Chlorine (Distribution)	MRDL=	MRDL G=4	1.51 (Jan 2024)	0.79 – 1.51	ppm	2024	N	Water additive used to control microbes
Total Trihalomethanes	80	N/A	55.75 (1) (2nd Quarter)	28.70- 76.80	ppb	2024	N	Byproduct of drinking water chlorination
Haloacetic Acids	60	N/A	38.18 (1) (4th Quarter)	27.00- 53.20	ppb	2024	N	Byproduct of drinking water disinfection

(1) Indicates that these are the highest running annual average (RAA) calculated during 2024.

Entry Point Disinfectant Residual									
Contaminant		Lowest Level Detected	Range of	Units	Lowest Sample Date	Violation Y/N	Sources of Contamination		
Chlorine 2024	0.20	0.50	0.50 - 2.95	ppm	2/23/24	N	Water additive used to control microbes.		

Contaminant	Action Level (AL)		90 th Percentile Value	Range of Tap Sampling Results	Units	# of Sites Above AL of Total Sites	Violation of TT Y/N	Sources of Contamination
Lead (2022)	15	0	0.000	0 – 3.02	ppb	0 out of 10	N	Corrosion of household plumbing systems; Erosion of natural deposits
Copper (2022)	1.3	1.3	0.176	0.0187 – 0.191	ppm	0 out of 10	N	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives

Lead: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Mapleton Municipal Water Authority is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Mapleton Municipal Water Authority at 814-542-3293. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at www.epa.gov/safewater/lead

A lead service line inventory was completed in 2024, and it was determined there were no lead service lines in our distribution system and numerous lines were determined to be unknown materials. To access the service line inventory, contact Mapleton Municipal Water Authority at (814) 542-3293.

Contaminant	MCL	MCLG	Highest Level Detected	Sample Date	Violation of TT Y/N	Source of Contamination
Turbidity	TT=1 NTU for a single measurement	0	0.611 NTU	4/13/24	N	Soil Runoff
	TT= at least 95% of monthly samples ≤0.3 NTU		100%	2024	N	

<u>Violations:</u> During 2024 we monitored late for Haloacetic Acids and Trihalomethanes in the first, second and third quarters. We monitored late for Total Coliform Presence in March of 2024. We failed to monitor Total Coliform in December of 2023 and January of 2025. We failed to issue a Public Notice for failure to monitor Total Coliform in December 2023 within the required time frame. A public notification describing these violations is enclosed at the end of this report.

EDUCATIONAL INFORMATION:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.
- In order to ensure that tap water is safe to drink, EPA and DEP prescribe regulations which limit the amount of
 certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for
 contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER FAILURE TO MONITOR

ESTE INFORME CONTIENE INFORMACIÓN IMPORTANTE ACERCA DE SU AGUA POTABLE. HAGA QUE ALGUIEN LO TRADUZCA PARA USTED, O HABLE CON ALGUIEN QUE LO ENTIENDA.

Monitoring Requirements Not Met for Mapleton Municipal Water Authority

Our water system violated several drinking water standards over the past year. Even though these were not emergencies, as our customers, you have a right to know what happened and what we did to correct these situations.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During 2024 we were required to monitor for Haloacetic Acids (5) and Trihalomethanes ±3 days of March 15th, June 15th and September 15th but sampled late for each of those quarters. We are required to sample for Total Coliform Presence monthly, but failed to sample for the month of March until 4/4/24. We failed to monitor Total Coliform in December of 2023 and January of 2025. We failed to issue a Public Notice for failure to monitor Total Coliform in December 2023 within the required time frame.

What should I do?

There is nothing you need to do at this time.

The table below lists the contaminants we did not properly test for during the last year, how often we are supposed to sample for Haloacetic Acids (5), Trihalomethanes, and Total Coliform Presence how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date on which follow-up samples were taken.

Contaminant	Required sampling frequency	Number of samples taken	When all samples should have been taken	When samples were taken
Haloacetic Acids (5)	Quarterly	1	+3 days of March 15th, 2024	5/9/24
Trihalomethanes	Quarterly	1	+3 days of March 15th, 2024	5/9/24
Haloacetic Acids (5)	Quarterly	1	+3 days of June 15th, 2024	6/27/24
Trihalomethanes	Quarterly	1	+3 days of June 15th, 2024	6/27/24
Haloacetic Acids (5)	Quarterly	1	±3 days of September 15 th , 2024	9/19/24
Trihalomethanes	Quarterly	1	±3 days of September 15 th , 2024	9/19/24
Total Coliform Presence	Monthly	1	March 2024	4/4/24
Total Coliform Presence	Monthly	0	December 2023	N/A
Total Coliform Presence	Monthly	0	January 2025	N/A

What happened? What was done?

During 2024 we were required to monitor for Haloacetic Acids and Trihalomethanes <u>+</u> 3 days of March 15th but did not sample until 5/9/24. We were required to monitor for Haloacetic Acids and Trihalomethanes <u>+</u> 3 days of June 15th, but did not sample until 6/27/24. We were required to monitor for Haloacetic Acids and Trihalomethanes <u>+</u> 3 days of September 15th, but did not sample until 9/19/24. We are required to sample for Total Coliform Presence monthly, but did not sample for the month of March 2024 until 4/4/24. We failed to monitor Total Coliform in December of 2023 and January of 2025. We failed to issue a Public Notice for failure to monitor Total Coliform in December 2023 within the required time frame.

For more information, please contact the Mapleton Municipal Water Authority at (814) 542-3293.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by Mapleton Municipal Water Authority.

PWS ID#: 4310015 Date distributed: